Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs
نویسنده
چکیده
In this paper, I give a short proof of a recent result by Sokal, showing that all zeros of the chromatic polynomial PG(q) of a finite graph G of maximal degree D lie in the disc |q| < KD, where K is a constant that is strictly smaller than 8.
منابع مشابه
Regions Without Complex Zeros for Chromatic Polynomials on Graphs with Bounded Degree
We prove that the chromatic polynomial PG(q) of a finite graph G of maximal degree ∆ is free of zeros for |q| ≥ C∗(∆) with C∗(∆) = min 0<x<2 1 ∆ −1 (1 + x) x [2− (1 + x)] This improves results by Sokal (2001) and Borgs (2005). Furthermore, we present a strengthening of this condition for graphs with no triangle-free vertices.
متن کاملLINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
متن کاملChromatic Polynomials, Potts Models and All That
The q-state Potts model can be defined on an arbitrary finite graph, and its partition function encodes much important information about that graph, including its chromatic polynomial, flow polynomial and reliability polynomial. The complex zeros of the Potts partition function are of interest both to statistical mechanicians and to combinatorists. I give a pedagogical introduction to all these...
متن کاملBounds On The Complex Zeros Of (Di)Chromatic Polynomials And Potts-Model Partition Functions
I show that there exist universal constants C(r) < ∞ such that, for all loopless graphs G of maximum degree ≤ r, the zeros (real or complex) of the chromatic polynomial PG(q) lie in the disc |q| < C(r). Furthermore, C(r) ≤ 7.963907r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q, {ve}) in the complex antiferromagnetic regime |1 + ve|...
متن کاملOn the $s^{th}$ derivative of a polynomial
For every $1leq s< n$, the $s^{th}$ derivative of a polynomial $P(z)$ of degree $n$ is a polynomial $P^{(s)}(z)$ whose degree is $(n-s)$. This paper presents a result which gives generalizations of some inequalities regarding the $s^{th}$ derivative of a polynomial having zeros outside a circle. Besides, our result gives interesting refinements of some well-known results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 15 شماره
صفحات -
تاریخ انتشار 2006